Estimation in partially linear models and numerical comparisons
نویسندگان
چکیده
منابع مشابه
Estimation in partially linear models and numerical comparisons
Partially linear models with local kernel regression are popular non-parametric techniques. However, bandwidth selection in the models is a puzzling topic that has been addressed in literature with the use of undersmoothing and regular smoothing. In an attempt to address the strategy of bandwidth selection, we review profile-kernel based and backfitting methods for partially linear models, and ...
متن کاملWavelet estimation of partially linear models
A wavelet approach is presented for estimating a partially linear model (PLM). We find an estimator of the PLM by minimizing the square of the l2 norm of the residual vector with penalizing the l1 norm of the wavelet coefficients of the nonparametric component. This approach, an extension of the wavelet approach for nonparametric regression problems, avoids the restrictive smoothness requiremen...
متن کاملOn Estimation of Partially Linear Transformation Models.
We study a general class of partially linear transformation models, which extend linear transformation models by incorporating nonlinear covariate effects in survival data analysis. A new martingale-based estimating equation approach, consisting of both global and kernel-weighted local estimation equations, is developed for estimating the parametric and nonparametric covariate effects in a unif...
متن کاملRank Estimation of Partially Linear Index Models
We consider a generalized regression model with a partially linear index. The index contains an additive nonparametric component in addition to the standard linear component, and the models dependent variable is transformed by a unknown monotone function. We propose weighted rank estimation procedures for estimating (i) the coe¢ cients for the linear component, (ii) the nonparametric component...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2006
ISSN: 0167-9473
DOI: 10.1016/j.csda.2004.10.007